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Abstract

We investigate the behaviour of the Lasso for identifying invalid instruments in
linear models, as proposed recently by Kang, Zhang, Cai and Small (2015, Journal
of the American Statistical Association, in press), where invalid instruments are
such that they enter the model as explanatory variables. We show that for this
setup, the Lasso may not select all invalid instruments in large samples if they are
relatively strong. Consistent selection also depends on the correlation structure of
the instruments. We propose an initial estimator that is consistent when less than
50% of the instruments are invalid, but its consistency does not depend on the rel-
ative strength of the instruments or their correlation structure. This estimator can
therefore be used for adaptive Lasso estimation. We develop an alternative selec-
tion method based on Hansen’s J-test of overidentifying restrictions, but limiting
the number of models to be evaluated. This latter selection procedure is consistent
under weaker conditions on the number of invalid instruments and is aligned with
the general identification result for this particular model.
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1 Introduction

Instrumental variables estimation is a procedure for the identification and estimation

of causal effects of exposures on outcomes where the observed relationships are con-

founded by non-random selection of exposure. This problem is likely to occur in ob-

servational studies, but also in randomised clinical trials if there is selective participant

non-compliance. An instrumental variable (IV) can be used to solve the problem of non-

ignorable selection. In order to do this, an IV needs to be associated with the exposure,

but only associated with the outcome indirectly through its association with the exposure.

The former condition is referred to as the ‘relevance’and the latter as the ‘exclusion’.

Examples of instrumental variables are quarter-of-birth for educational achievement to

determine its effect on wages, see Angrist and Krueger (1991), randomisation of patients

to treatment as an instrument for actual treatment when there is non-compliance, see

e.g. Greenland (2000), and Mendelian randomisation studies use IVs based on genetic

information, see e.g. Lawlor et al. (2008). For recent reviews and further examples see

e.g. Clarke and Windmeijer (2012), Imbens (2014), Burgess et al. (2015) and Kang et

al. (2015).

Whether instruments are relevant can be tested from the observed association be-

tween exposure and instruments. The effects of ‘weak instruments’, i.e. the case where

instruments are only weakly associated with the exposure of interest have been derived for

the linear model using weak instrument asymptotics by Staiger and Stock (1997), leading

to critical values for the simple F-test statistic for testing the null of weak instruments,

derived by Stock and Yogo (2005).

In this paper we consider violations of the exclusion condition of the instruments,

following closely the setup of Kang et al. (2015) for the linear IV model where some of

the available instruments can be invalid in the sense that they can have a direct effect on

the outcomes or are associated with unobserved confounders. Kang et al. (2015) propose

a Lasso type procedure to identify and select the set of invalid instruments. Liao (2013)

and Cheng and Liao (2015) also considered shrinkage estimation for identification of

invalid instruments, but in their setup there is a subset of instruments that is known

to be valid and that contains suffi cient information for identification and estimation of

the causal effects. In contrast, Kang et al. (2015) do not assume any prior knowledge of
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which instruments are potentially valid or invalid. This is a similar setup as in Andrews

(1999) who proposed a selection procedure using information criteria based on the so-

called J-test of over-identifying restrictions, as developed by Sargan (1958) and Hansen

(1982). The Andrews (1999) setup is more general than the Kang et al. (2015) setup

and requires a large number of model evaluations, which has a negative impact on the

performance of the selection procedure.

In this paper we assess the performance of the Kang et al. (2015) Lasso type selection

and estimation procedure. By evaluating the LARS algorithm of Efron et al. (2004), using

large sample asymptotics, we show that the Lasso method may not consistently select

the correct invalid instruments. Consistent selection depends on the relative strength of

the instruments and/or the instrument correlation structure, even when less than 50%

of the instruments are invalid. We show that under the latter condition a simple median

type estimator is a consistent estimator for the parameters in the model, independent of

the relative strength of the instruments or their correlation structure. This estimator can

therefore be used for an adaptive Lasso procedure as proposed by Zou (2006). We also

show that the specific model structure of Kang et al.(2015) makes upward and downward

testing procedures as proposed by Andrews (1999) feasible, as the number of models to be

evaluated is limited by the model structure. These latter procedures result in consistent

model selection under weaker conditions on the number of invalid instruments, with the

necessary condition being that the valid instruments form the largest group, where a

group of instruments is formed by instruments giving the same value of the estimate of

the causal effect.1

Instrument strength is very likely to vary by instruments, so it will be important to

use our proposed estimators and selection methods for assessing instrument validity. In

Mendelian randomization studies it is clear that genetic markers have differential impacts

on exposures from examining the results from genome wide association studies. The

issue of correlation between genetic markers seems less of an issue as genes are generally

independently distributed by Mendel’s second law.

Finally, another strand of the literature focuses on instrument selection in potentially

1Bowden et al. (2015) and Kolesar et al. (2015) allow for all instruments to be invalid and show that
the causal effect can be consistently estimated if the number of instruments increases with the sample
size under the relatively strong assumption of uncorrelatedness of the instrument strength and their
direct effects on the outcome variable.
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high-dimensional settings, see e.g. Belloni et al. (2012) and Lin et al. (2015). Here the

focus is on identifying important covariate effects and selecting optimal instruments from

a (large) set of a priori valid instruments, where optimality is with respect to the variance

of the IV estimator. Belloni et al. (2012) propose a new method for selecting the Lasso

penalty parameter. We analyse its behaviour for the Lasso selection method in cases

where this method consistently selects the instruments. As our setting is that of a fixed

number of potential instruments, we show that simply using Hansen’s J-test performs

as well, and that the so-called post-Lasso selection IV estimator has better finite sample

properties than the Lasso estimator.

2 Model and Lasso Estimator

We follow Kang, Zhang, Cai and Small (2015) (KZCS from now on), who considered the

following potential outcomes model. The outcome for an individual i is denoted by the

scalar Yi, the treatment by the scalar Di and the vector of L potential instruments by Zi..

The instruments may not all be valid and can have a direct or indirect effect resulting in

the following potential outcomes model

Y
(d′,z′)
i − y(d,z)i = (z′ − z)φ+ (d′ − d) β (1)

E
[
Y
(0,0)
i |Zi.

]
= Z′i.ψ (2)

where φ measures the direct effect of z on Y , and ψ represents the confounders that affect

the instruments and the outcome.

We have a random sample {Yi, Di,Z
′
i.}

n
i=1. Combining (1) and (2), the observed data

model for the random sample

Yi = Diβ + Z′i.α + εi (3)

where α = φ+ ψ;

εi = Y
(0,0)
i − E

[
Y
(0,0)
i |Zi.

]
and hence E [εi|Zi.] = 0. The KZCS definition of a valid instrument is then given as

follows: Instrument j, j ∈ {1, ..., L}, is valid if αj = 0 and it is invalid if αj 6= 0. As

in the KZCS setting, we are interested in the identification and estimation of the scalar

treatment effect β in large samples with a fixed number L of potential instruments.
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Let y and d be the n-vectors of n observations on {Yi} and {Di} respectively, and
let Z be the n× L matrix of potential instruments. As an intercept is implicitly present
in the model, y, d and the columns of Z have all been taken in deviation from their

sample means. Let Zsel be a subset of instruments included in the equation, and let

R =
[

d Zsel

]
. The standard Instrumental Variables, or Two-Stage Least Squares

(2SLS), estimator is then given by

θ̂ =

(
β̂
α̂sel

)
=
(
R′Z (Z′Z)

−1
Z′R

)−1
R′Z (Z′Z)

−1
Z′y. (4)

Let d̂ = PZd, PZ = Z (Z′Z)−1 Z′, then θ̂ is equivalent to the OLS estimator in the model

Yi = D̂iβ + Z′sel,i.αsel + ξi

and hence

α̂sel =
(
Z′selMd̂Zsel

)−1
Z′selMd̂y

=
(
Z′selMd̂Zsel

)−1
Z′selMd̂PZy. (5)

where Md̂ = In−Pd̂, where In is the identity matrix of order n.

d̂ is the linear projection of d on Z. If we define γ̂ = (Z′Z)−1 Z′d, then d̂ = Zγ̂, or

D̂i = Z′i.γ̂, and we specify

Di = Z′i.γ + vi, (6)

where γ = E [Zi.Z
′
i.]
−1E [Zi.Di], and hence E [Zi.vi] = 0. Further, as in KZCS, let

Γ = E [Zi.Z
′
i.]
−1E [Zi.Yi] = γβ + α. Clearly, both γ and Γ can be consistently estimated

under standard assumptions. Assuming that γj 6= 0 ∀j, then define πj as

πj ≡
Γj
γj

= β +
αj
γj
. (7)

Theorem 1 in KZCS states the conditions under which, given knowledge of γ and Γ, a

unique solution exists for values of β and αj . A necessary and suffi cient condition to

identify β and the αj is then that the valid instruments form the largest group, where

instruments form a group if they have the same value of π. Corollary 1 in KZCS then

states a suffi cient condition for identification. Let s be the number of invalid instruments,

then if s < L/2, the parameters are identified as then clearly the largest group is formed

by the valid instruments.
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In model (3), some elements of α are assumed to be zero, but it is not known ex-ante

which ones they are and the selection problem therefore consists of correctly identifying

those instruments with non-zero α. KZCS propose to estimate the parameters α and β

by using `1 penalisation on α and to minimise(
α̂λ, β̂

λ
)

= arg min
α,β

1

2
‖PZ (y − dβ − Zα) ‖22 + λ‖α‖1, (8)

where the `1 norm ‖α‖1 =
∑

j |αj| and the squared `2 norm is (y − dβ − Zα)′PZ (y − dβ − Zα).

This method is closely related to the Lasso, and the regularization parameter λ deter-

mines the sparsity of the vector α̂λ. From (5), a fast two-step algorithm is proposed that

runs as follows. For a given λ solve

α̂λ = arg min
α

1

2
‖Md̂PZy −Md̂Zα‖

2
2 + λ‖α‖1 (9)

and estimate β̂
λ
by

β̂
λ

=
d̂′
(
y − Zα̂λ

)
d̂′d̂

. (10)

In order to find α̂λ in (9), the Lasso modification of the LARS algorithm of Efron,

Hastie, Johnstone and Tibshirani (2004) can be used and KZCS have developed an R-

routine for this purpose and call the resulting estimator sisVIVE (some invalid and some

valid IV estimator), where the regularisation parameter λ is obtained by cross-validation.

Following the notation of Zou (2006), let A be the set of invalid instruments, A =

{j : αj 6= 0}. Let An =
{
j : α̂λj 6= 0

}
. We will first investigate under what conditions the

Lasso method consistently selects invalid instruments such that limn→∞ P (An = A) = 1,

or for a weaker version, such that limn→∞ P (An ⊇ A) = 1.

An important difference with the standard Lasso approach for linear models is that

the matrix of explanatory variables Md̂Z in (9) is not full rank, but its rank is equal to

L − 1. Whereas λ = 0 would simply include all regressors in the standard linear model

and the resulting OLS estimator is consistent, setting λ = 0 in (9) does not lead to a

unique 2SLS estimator, as all models with L − 1 instruments included as invalid would

result in a residual correlation of 0 and hence λ = 0. Therefore the LARS algorithm

has to start from a model without any instruments included as invalid, and at the last

LARS/Lasso step one instrument is excluded from the model, i.e. treated as valid. When

L− 1 instruments have been selected as invalid and included in the model, the resulting
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Lasso estimator is the (just identified) 2SLS estimator and this final model is the model

for which λ = 0. Clearly, it can then be the case that the LARS/Lasso path is such that

it does not include a model where all invalid instruments have been selected as such,

which is the case when the final instrument selected as valid is in fact invalid. If that is

the case, then there is no value of λ for which β̂λ is consistent.

Below we show under what conditions the large sample, n → ∞, LARS/Lasso path
does or does not include models where all invalid instruments have been selected. In

simple settings, we show that this does depend on the number of invalid instruments, the

relative strengths of the invalid versus the valid instruments and the correlation structure

of the instruments. KZCS did show analytically that the performance of the Lasso esti-

mator is influenced by these factors. They derived an estimator performance guarantee

condition related to the values of µ = maxj 6=r
∣∣Z′.jZ.r

∣∣ and ρ = maxj

∣∣∣Z′.jd̂∣∣∣ /d̂′d̂. The
constant µ measures the maximum correlation between any two columns of the matrix of

instruments Z, and ρ is a measures the maximum strength of the individual instruments.

Their derived condition on the number of invalid instruments in Corollary 2 is that

s < min
(

1
12µ
, 1
10ρ2

)
. KZCS acknowledge the fact that these constraints are very strict.

For example, if µ = 0.1, then s < 10/12 and no invalid instruments are allowed, although

their Monte Carlo results show that a simple correlation structure does not affect the

behaviour of the estimator. Similarly for ρ, only a small value is allowed in order to have

any invalid instruments allowed in the setup. If we assume that plim (n−1Z′Z) = Q, then

plim


∣∣∣Z′.jd̂∣∣∣
d̂′d̂

 =

∣∣Q′.jγ∣∣
γ′Qγ

.

Therefore, if Q = IL this is equal to
∣∣γj∣∣ /γ′γ and hence ρ is associated with the strongest

instrument in terms of γj. Our results for consistent selection are based on the relative

values of γ for the valid and invalid instruments, where we simply refer to γj as the in-

strument strength for instrument j. We show for uncorrelated instruments, with Q = IL,

that if invalid instruments are stronger than the valid ones, the selection procedure may

select the valid instruments as invalid. Also, for the correlation structure, as in Zou

(2006), we show that consistent selection depends on the patterns of correlations, not

on the maximum correlation per se. Using our large sample analysis we can find simple

configurations where the Lasso selection is inconsistent, which we confirm in some Monte
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Carlo studies.

In order to mitigate these problems for the Lasso estimator, one can use the Adaptive

Lasso approach of Zou (2006) using an initial consistent estimator of the parameters. In

the standard linear case, the OLS estimator in the model with all explanatory variables

included is consistent. As explained above, in the instrumental variables model this

option is not available. Let π̂j = Γ̂j/γ̂j, where γ̂ = (Z′Z)−1 Z′d and Γ̂ = (Z′Z)−1 Z′y.

Under standard assumptions as specified below, we show that the median of the π̂js is a

consistent estimator for β when s < L/2, without any further restrictions on the relative

strengths or correlations of the instruments, and hence this estimator can be used for the

Adaptive Lasso.

We finally propose alternative consistent selection methods that are more closely

related to the identification results derived from (7). These are the so-called upward and

downward selection methods as proposed by Andrews (1999) based on the Hansen (1982)

J-test of overidentifying restrictions, using the rank-ordered estimates of π̂j to guide the

search.

As a further contribution, we consider different selection strategies to determine the

value of λ for the Lasso estimator (8) when suffi cient conditions are met for consistent

selection end estimation. We consider a method recently proposed by Belloni, Chen,

Chernozhukov and Hansen (2012) and a method based on Hansen’s J-test. We show that

these methods perform well, but that finite sample estimation results are substantially

better for post-Lasso selection 2SLS estimators than for the Lasso estimators.

For the random variables and sample {Yi, Di,Z
′
i.}

n
i=1, and model (3) we assume

throughout that the following conditions hold:

C1. E [Zi.Z
′
i.] = Q is full rank

C2. plim (n−1Z′Z) = E [Zi.Z
′
i.]; plim (n−1Z′d) = E [Zi.Di]; plim (n−1Z′ε) = E [Zi.εi] = 0.

C3. γ = (E [Zi.Z
′
i.])
−1E [Zi.Di], γj 6= 0, j = 1, ..., L.

3 Uncorrelated and Equal Strength Instruments

We first consider the conditions under which the Lasso procedure consistently selects the

invalid instruments for the case where the instrument strengths are all equal, i.e. γj =

γ̃ for j = 1, .., L, and the instruments are uncorrelated, with variances equal to 1,
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E [Zi.Z
′
i.] = IL = plim (n−1Z′Z).

Dividing by the sample size n, incorporating normalisation and noting that Z′Md̂Md̂PZy =

Z′Md̂y, the Lasso estimator α̂
λ is obtained as

α̂λ = arg min
α

1

2n
‖y − Z̃α‖22 +

λ

n
‖Ω̃nα‖1, (11)

where Z̃ = Md̂Z, and Ω̃n is an L × L diagonal matrix with diagonal elements ω̃j =√
Z̃′j.Z̃j./n =

√
Z′j.Md̂Zj./n.

The Lasso path can be obtained using the Lasso modification of the LARS algorithm,

see Efron et al. (2004). Starting from the model without any instruments included as

explanatory variables, let the L-vector of correlations ĉn be defined as

ĉn = n−1Ω̃−1n Z̃′y = n−1Ω̃−1n Z′Md̂y,

with j-th element

ĉn,j =
n−1Z′.jMd̂y√
n−1Z′.jMd̂Z.j

(12)

The first LARS step selects the variable(s) Z̃.j for which |ĉn,j| is maximum. We have for
large samples that

plim (ĉn,j) =
αj − α√

(L− 1) /L
,

as

plim
(
n−1Z′.jMd̂y

)
= plim

(
n−1Z′.jMd̂Zα

)
= plim

(
n−1Z′.jZα

)
− plim

(
n−1Z′.jPZd (d′PZd)

−1
d′PZZα

)
= αj − γj

γ′α

γ′γ
= αj − L−1

L∑
r=1

αr

= αj − α,

and

plim
(
n−1Z′j.Md̂Zj.

)
= 1−

γ2j
γ′γ

= 1− 1

L

using the facts that plim (n−1Z′Z) = IL and that all the γjs are the same.

There are s < L invalid instruments. If all the invalid instruments have the same

effect a, the case considered mostly in the KZCS simulations, then α = sa/L. We then
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get for a valid instrument plim (ĉn,val) = −sa/
√
L (L− 1), and for an invalid instru-

ment plim (ĉn,inv) = (L− s)a/
√
L (L− 1). In large samples, the invalid instruments get

therefore selected in the first LARS step if

(L− s) |a| > s |a| ⇔ s < L/2, (13)

so less than 50% of the instruments can be invalid, which is aligned with Theorem 1 and

Corollary 1 of KZCS. In practice, of course, the correlations for the invalid (and valid

instruments) will not be exactly equal to each other, and the instruments will be selected

one at the time, with the LARS update of the predicted mean approaching zero for large

sample sizes within the two groups of instruments.

It is clear from the correlations derived above, that many situations can arise in

terms of selecting invalid instruments correctly, depending on the values of the αj. At

the one extreme, it is clear that the first LARS step would correctly select L− 2 invalid

instruments, for L even, when half of them have effect a and the other half −a, which
is a case where the parameters are in principle not identified. Perhaps more interesting

is to consider the situation where the s invalid instruments have distinct positive effects,

ordered in such a way that α1 > α2 > ... > αs > αs+1 = ... = αL = 0. We show in

the Appendix that also for this case the condition that s < L/2 need to be satisfied for

the LARS algorithm to select the invalid instruments in the first s steps in large samples

and that for s > L/2 the full LARS path does not include a model where all invalid

instruments have been included. This is in contrast to the identification results, as the

parameters are identified in this case by Theorem 1 in KZCS as long as s < L− 1.

For consistent model selection and estimation, the condition that s < L/2 is suffi cient

when instruments are uncorrelated and have equal strengths. We will show below that

this condition is no longer suffi cient when we allow for differential instrument strengths,

especially when invalid instruments are relatively strong. It is also not suffi cient under

certain correlation structures of the instruments, as observed by Zou (2006) for the stan-

dard linear model case. However, before we move to these problems, we will analyse the

behaviour of the Lasso estimator of (11) in situations where the condition that s < L/2

is suffi cient for consistent selection of the invalid instruments.

We start with presenting some estimation results from a simple Monte Carlo exercise,
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similar to that in KZCS. The data are generated from

Yi = Diβ + Z′i.α + εi

Di = Z′i.γ + vi,

where (
εi
vi

)
∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
;

Zi. ∼ N (0, IL) ;

and we set β = 0; γ = 0.2ιL with ιL an L-vector of ones; L = 10; ρ = 0.25; s = 3, and the

first s elements of α are equal to a = 0.2. Table 1 presents estimation results for estimators

of β in terms of bias, standard deviation, root mean squared error (rmse) and median

absolute deviation (mad) for 1000 replications for sample sizes of n = 500, n = 2000 and

n = 10, 000. The "2SLS" results are for the 2SLS estimator that treats all instruments as

valid. The "2SLS or" is the oracle 2SLS estimator that correctly includes the three invalid

instruments Z.1, .,Z.3 in the model as explanatory variables. For the Lasso estimates, the

value for λ has been obtained by 10-fold cross-validation, using the one-standard error

rule, as in KZCS. This estimator is denoted "Lassocvse" and is the one produced by the

sisVIVE routine. We also present results for the cross-validated estimator that does not

use the one-standard error rule, denoted "Lassocv". We further present results for the

so-called post-Lasso estimator, see e.g. Belloni et al. (2012), which is called the LARS-

OLS hybrid by Efron et al. (2004). In this case this is the 2SLS estimator (4), where Zsel

is the set of instruments with non-zero estimated Lasso coeffi cients α. Further entries

in the table are the average number of selected instruments, which are the number of

instruments with non-zero α coeffi cients, together with the minimum and maximum

number of selected instruments, and the proportion of times the selected instruments

include the 3 invalid instruments.
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Table 1. Estimation results for β; L = 10, s = 3

av #sel instr prop Z.1, .,Z.3

β bias std dev rmse mad [min, max] selected
n = 500
2SLS 0.2966 0.0808 0.3074 0.2944 0 0
2SLS or 0.0063 0.0843 0.0845 0.0570 3 1
Lassocv 0.1384 0.0965 0.1687 0.1352 6.41 [2,9] 0.990
Post-Lassocv 0.1169 0.1136 0.1630 0.1143
Lassocvse 0.2206 0.0847 0.2363 0.2174 3.16 [0,8] 0.664
Post-Lassocvse 0.0905 0.1243 0.1537 0.0994
n = 2000
2SLS 0.3019 0.0387 0.3044 0.3007 0 0
2SLS or 0.0047 0.0422 0.0424 0.0285 3 1
Lassocv 0.0721 0.0509 0.0882 0.0705 6.56 [3,9] 1
Post-Lassocv 0.0617 0.0577 0.0845 0.0644
Lassocvse 0.1140 0.0430 0.1218 0.1165 3.76 [3,8] 1
Post-Lassocvse 0.0277 0.0521 0.0590 0.0387
n = 10, 000
2SLS 0.2996 0.0177 0.3002 0.2992 0 0
2SLS or 0.0006 0.0183 0.0183 0.0127 3 1
Lassocv 0.0317 0.0236 0.0395 0.0311 6.44 [3,9] 1
Post-Lassocv 0.0272 0.0267 0.0380 0.0282
Lassocvse 0.0479 0.0187 0.0514 0.0489 3.81 [3,9] 1
Post-Lassocvse 0.0118 0.0238 0.0265 0.0176
Notes: Results from 1000 MC replications; a = 0.2; β = 0; γ = 0.2; ρ = 0.25

The results in Table 1 reveal some interesting patterns. First of all, the Lassocv esti-

mator outperforms the Lassocvse estimator in terms of bias, rmse and mad for all sample

sizes, but this is reversed for the post-Lasso estimators, i.e. the post-Lassocvse outper-

forms the post-Lassocv. The Lassocv estimator selects on average around 6.5 instruments

as invalid, which is virtually independent of the sample size. The Lassocvse estimator

selects on average around 3.8 instruments as invalid for n = 2000 and n = 10, 000, but

fewer, 3.17 for n = 500. Although the correct instruments are always selected for the

larger sample sizes, the Lassocvse is substantially biased, the biases being larger than

twice the standard deviations. The post-Lassocvse estimator performs best, but is still

outperformed by the oracle 2SLS estimator.

Figures 1a and 1b illustrate the different behaviour of the Lasso and post-Lasso es-

timators. Figure 1a shows the bias and standard deviations of the two estimators for
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different values of λ/n, for the design above with n = 2000, again from 1000 replications.

It is clear that the Lasso estimator exhibits a positive bias for all values of λ, declining

from that of the naive 2SLS estimator to the minimum bias of 0.0664 at λ/n = 0.0060.

In contrast, the post-Lasso estimator is (much) less biased, obtaining its minimum bias

of 0.0068 at the value of λ/n of 0.0965. Figure 1b displays the same information but now

as a function of the LARS steps (we have omitted 3 replications where there were Lasso

steps). At step 3, the correct 3 invalid instruments have been selected 991 times out of

the 997 replications, and the post-Lasso estimator has a bias there of 0.0058, only frac-

tionally larger than that of the oracle 2SLS estimator. In contrast, the Lasso estimator

for β still has a substantial upward bias at step 3. Its bias decreases from 0.116 at step

3 to a minimum of 0.0650 at step 8. Interestingly, the bias of the post-Lasso estimator

increases again after step 3, reaching the same bias as the Lasso estimator at the last

step, as there λ = 0 and the Lasso and post-Lasso estimators are equal.

Figures 1a and 1b. Bias and standard deviations of Lasso and post-Lasso estimators as

functions of λ/n and LARS steps. Same design as in Table 1, n = 2000. 3 replications

out of 1000 omitted in 1b due to Lasso steps.

We can understand the different behaviour of the Lasso and post-Lasso estimators,

which is due to shrinkage of the Lasso estimator for α, as follows. Denote by Zλ
sel the

matrix of selected instruments for any value of λ, i.e. those instruments with non-zero

values of α̂λ. For the Lasso and post-Lasso estimators, β̂
λ
and β̂, we have that

β̂
λ

= β̂ +
d̂′Zλ

sel

(
α̂sel − α̂λsel

)
d̂′d̂

.
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For those values of λ where the correct invalid instruments have been included, the biases

of β̂ and α̂ are small in large samples. Define δ̂
λ
as the shrinkage factor of the Lasso

estimator, relative to that of the post-Lasso estimator, i.e. α̂λsel ≈ δ̂
λ
α̂sel. We then have

approximately

β̂
λ
≈ β̂ +

(
1− δ̂

λ
) d̂′Zλ

selα̂sel

d̂′d̂
.

Note that we have for the 2SLS estimator in the model that treats all instruments as

valid,

β̂ =
d̂′y

d̂′d̂
=

d̂′y

d̂′d̂
= β +

d̂′Zα

d̂′d̂
+

d̂′ξ

d̂′d̂
.

Therefore, the bias of the Lasso estimator due to shrinkage is in the direction of the bias

of the 2SLS estimator in the model where all instruments are treated as valid. As an

illustration, for the n = 2000 case above, at λ/n = 0.0965, the means of the first three

elements of α̂λsel are all equal to 0.067, whereas those of the post-Lasso 2SLS estimator

are equal to 0.198, hence 1 − δ̂
λ

= 0.662. The bias of the 2SLS estimator treating all

instruments as valid is given by 0.302, and 0.662∗0.302 = 0.200. This is very close to the

difference in the biases of β̂
λ
and β̂ at this point, which is given by 0.201−0.007 = 0.194.

3.1 Stopping Rule

It is clear from the results above that the post-Lasso estimator outperforms the Lasso

estimator, with the performance of the post-Lassocvse best, but still some way short of that

of the oracle 2SLS estimator, even for n = 10, 000. It is also clear, and easily understood

from Figures 1a and 1b, that the 10-fold cross-validation method selects too many valid

instruments as invalid over and above the invalid ones. The ad-hoc one-standard error

rule does improve the selection. We next consider two alternative stopping rules, one

proposed for the Lasso by Belloni et al. (2012), and one for GMM moment selection by

Andrews (1999).

Belloni et al. (2012) explicitly allow for general conditional heteroskedasticity and

consider the Lasso estimator defined as

α̂λ = arg min
α

1

2n
‖y − Z̃α‖22 +

λ

n
‖Ω̃∗nα‖1,
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where Ω̃∗n is an L× L diagonal matrix with j-th diagonal element

ω̃∗n,j =

√√√√n−1
n∑
i=1

z̃2ij ε̃
2
i ,

where

ε̃i = yi − Z̃′i.α.

Then let

ĉ∗n =
1

n

n∑
i=1

(
Ω̃∗n

)−1
Z̃i.ε̃i.

Belloni et al. (2012) apply the moderate deviation theory of Jing, Shao and Wang (2003)

to bound deviations of the maximal element of the vector of correlations ĉ∗n and hence

λ/n for models that have selected the invalid instruments. They establish that

P
(√

nmax (ĉ∗n) ≤ Φ−1
(

1− τn
2L

))
≥ 1− τn + o (1) ,

where Φ−1 (.) is the inverse, or quantile function, of the standard normal distribution,

and that the penalty level should satisfy

P

(
λ

n
≥ qmax (ĉ∗n)

)
→ 1

for some constant q > 1. Belloni et al. (2012) then recommend selecting

λ

n
= qΦ−1

(
1− τn

2L

)
/
√
n

and to set the confidence level τn = 0.1/ ln (n) and the constant q = 1.1. For n = 2000,

this results in a value for λ/n equal to 0.079, which suggests a good performance of the

post-Lasso estimator from Figure 1a, as the design there is conditionally homoskedastic.

We obtain the Lasso and post-Lasso estimators using the Belloni et al. (2012) iterative

procedure as described in their Appendix A, as the ε̃i need to be estimated to construct

Ω̃∗n. We use the post-Lasso estimator at every step to estimate the ε̃i.

The second stopping rule we consider is based on the approach of Andrews (1999).

We can use this approach because the number of instruments L is fixed and (much)

smaller than n. Consider again the model

y = dβ + Zselαsel + ξ (14)

= Rθ + ξ.
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Let Gn (θ) = n−1Z′ (y −Rθ), then the Generalised Methods of Moment (GMM) estima-

tor is defined as

θ̂GMM = arg min
θ

Gn (θ) W−1
n Gn (θ) ,

see Hansen (1982). 2SLS is a one-step GMM estimator, settingWn = n−1Z′Z. Given the

moment conditions E (Zi.ξi) = 0, 2SLS is effi cient under conditional homoskedasticity,

E
(
ξ2i |Zi.

)
= σ2ξ . Under general forms of conditional heteroskedasticity, an effi cient two-

step GMM estimator is obtained by setting

Wn = Wn

(
θ̂1

)
= n−1

n∑
i=1

((
yi −R′i.θ̂1

)2
Zi.Z

′
i.

)
where θ̂1 is an initial consistent estimator, with a natural choice the 2SLS estimator.

Then, under the null that the moment conditions are correct, E (Zi.ξi) = 0, the Hansen

(1982) J-test statistic and its limiting distribution are given by

Jn

(
θ̂1

)
= nGn

(
θ̂2

)
W−1

n

(
θ̂1

)
Gn

(
θ̂2

)
d→ χ2(L−dim(R)).

We can now combine the LARS/Lasso algorithm with the Hansen J-test, which is then

akin to a directed downward testing procedure in the terminology of Andrews (1999).

Let the critical value ζn,k = χ2k (τn) be the 1− τn quantile of the χ2k distribution, where
k = L − dim (R). Compute at every LARS/Lasso step as described above the Hansen

J-test and compare it to the corresponding critical value. We then select the model with

the largest degrees of freedom for which the J-test is smaller than the critical value. If

two models of the same dimension pass the test, which can happen with a Lasso step,

the model with the smallest value of the J-test gets selected. Clearly, this approach is a

post-Lasso approach, where the LARS algorithm is used purely for selection of the invalid

instruments. For consistent model selection, the critical values ζn,k need to satisfy

ζn,k →∞ and ζn,k = o (n) , (15)

see Andrews (1999). We select τn = 0.1/ ln (n) as per the Belloni et al. (2012) method.

Table 2 presents the estimation results using the two alternative stopping rules.

The subscripts "bcch" and "ah" denote the Belloni et al. (2012) method and the An-

drews/Hansen approach respectively. Both post-Lasso estimators are the simple 2SLS

estimators for comparison with the results in Table 1.
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Table 2. Estimation results for β; L = 10, s = 3

av #sel instr prop Z.1, .,Z.3

β bias std dev rmse mad [min, max] selected
n = 500
Lassobcch 0.2770 0.0846 0.2896 0.2770 1.16 [0,4] 0.068
Post-Lassobcch 0.1914 0.1324 0.2327 0.2028
Post-Lassoah 0.0896 0.1252 0.1539 0.1007 2.56 [0,5] 0.391
2SLS or 0.0063 0.0843 0.0845 0.0570 3 1
n = 2000
Lassobcch 0.1688 0.0438 0.1744 0.1694 3.11 [3,5] 1
Post-Lassobcch 0.0091 0.0445 0.0454 0.0294
Post-Lassoah 0.0055 0.0430 0.0434 0.0286 3.02 [3,5] 1
2SLS or 0.0047 0.0422 0.0424 0.0285 3 1
n = 10, 000
Lassobcch 0.0751 0.0180 0.0772 0.0756 3.11 [3,5] 1
Post-Lassobcch 0.0027 0.0191 0.0193 0.0134
Post-Lassoah 0.0009 0.0186 0.0186 0.0129 3.02 [3,5] 1
2SLS or 0.0006 0.0183 0.0183 0.0127 3 1
Notes: Results from 1000 MC replications; a = 0.2; β = 0; γ = 0.2 ρ = 0.25

For n = 500, we find that the value of λ/n as determined by the BCCH method is too

large and the method selects too few instruments as invalid, resulting in severely biased

Lasso and post-Lasso estimates. The AH approach behaves better for n = 500, but it also

selects too few invalid instruments, resulting in an upward bias for this particular case,

which is similar to results for the post-Lassocvse estimator in Table 1. For n = 2000 and

n = 10, 000, both post-Lasso procedures perform very well with properties very similar

to that of the oracle 2SLS estimator, with the AH approach marginally outperforming

the BCCH approach for this design. Also, using standard asymptotic robust standard

errors for the 2SLS estimators, Wald tests for the null H0 : β = 0, at the 10% level,

reject 11.9% (10.9%) and 10.8% (9.4%) for the BCCH and AH methods respectively for

n = 2000 (n = 10, 000), indicating that their distributions are very well approximated

by the standard limiting distribution of the 2SLS estimator.
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4 Varying Instrument Strength

As derived above, for the first step of the LARS algorithm we have, still assuming that

E (Zi.Z
′
i.) = IL,

plim (ĉn,j) =
αj − γj γ

′α
γ′γ√

1− γ2j
γ′γ

.

It is clear that allowing for differential instrument strengths, i.e. different values of γ,

may result in the LARS/Lasso path not including all invalid instruments. For example,

consider again the situation where all s invalid instruments have the same direct effect

a. The valid instruments all have strength γval, whereas the invalid instruments all have

strength γinv = tγval, with t > 0 Then for an invalid and a valid instrument we get

respectively,

plim (ĉn,inv) =
1√

st2 + L− s
a (L− s)√

(s− 1)t2 + L− s
;

plim (ĉn,val) = − 1√
st2 + L− s

ast√
st2 + L− s− 1

,

and hence we see that the valid instruments get selected as being invalid in large samples

if
st√

st2 + L− s− 1
>

L− s√
(s− 1)t2 + L− s

. (16)

For example, when L = 10 and s = 3, this happens when t > 2.7. As all the invalid

instruments in this case are "valid" for a causal estimate of β + a/γinv, the Lasso and

post-Lasso estimators will select the L− s valid instruments as invalid. Table 3 presents
estimation results for the same Monte Carlo design as in Table 1, with γval = 0.2, but

γinv = 3γval. For brevity, we only present results for the post-Lassocvse and post-Lassoah

estimators. Note that the behaviour of the oracle 2SLS estimator is the same as in Table

1. In this case β + α/γinv = 0 + 0.2/0.6 = 0.33, which is the size of the causal effect

estimated by the invalid instruments. For large sample sizes, the LARS/Lasso method

selects the valid instruments as invalid because of the relative strength of the invalid

instruments. For n = 500 the algorithm cannot separate the instruments and selects

only very few as invalid.
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Table 3. Estimation results for β; L = 10, s = 3, γinv = 3γval

av #sel instr prop Z.1, .,Z.3

β bias std dev rmse mad [min, max] selected
n = 500
Post-Lassocvse 0.2658 0.0428 0.2692 0.2651 0.44 [0,8] 0
Post-Lassoah 0.2651 0.0485 0.2695 0.2666 0.76 [0,6] 0
n = 2000
Post-Lassocvse 0.2911 0.0352 0.2932 0.2933 6.58 [0,9] 0.00
Post-Lassoah 0.2803 0.0399 0.2831 0.2845 5.05 [1,9] 0
n = 10, 000
Post-Lassocvse 0.3202 0.0122 0.3204 0.3205 8.70 [7,9] 0
Post-Lassoah 0.3233 0.0131 0.3236 0.3242 8.09 [6,9] 0
Notes: Results from 1000 MC replications; a = 0.2; β = 0; γval= 0.2 ρ = 0.25

It is clear that various combinations of instrument strength can lead to inconsistent

selection and estimation. One simple, but quite interesting example is the following.

Let L = 5 and s = 2. Let α = (0.2, 0.15, 0, 0, 0)′ and γ = (0.8, 0.7, 1, 0.25, 0.15)′, so

the strongest instrument and the two weakest instruments are valid, and the two invalid

instruments are relatively strong. The large sample LARS/Lasso path can be calculated

in this case to be {3, 1, 4, 5}, i.e. the strong valid instrument gets selected as invalid first,
and the full LARS path does not include a model where the two invalid instruments are

selected.

On the other hand, from (16) it is also easily seen that when the valid instru-

ments are stronger than the invalid ones, the LARS algorithm may select the correct

invalid instruments also when s ≥ L/2. For example, again for L = 10, when t = 0.5,

|plim (ĉn,inv)| > |plim (ĉn,val)| for s = 1, ..., 6.

5 Correlated Instruments

We revert back to the case where all γs are the same, but we now allow the instruments

to be correlated such that

E [Zi.Z
′
i.] = plim

(
n−1Z′Z

)
= Q

with all diagonal elements of Q equal to 1.
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For the numerator of ĉn,j as defined in (12) we get

plim
(
n−1Z′.jMd̂y

)
= Q′.j

(
α− γ γ

′Qα

γ′Qγ

)
= Q′.j

(
α− ιL

ι′LQα

ι′LQιL

)
,

where Q.j is the jth column of Q; ιL is an L-vector of ones, and the second result follows

because the γj are all the same.

For the denominator, we get

plim
(
n−1Z′.jMd̂Z.j

)
= 1−

(
Q′.jγ

)2
γ′Qγ

= 1−
(
Q′.jιL

)2
ι′LQιL

.

If we denote again the first s instruments to be the invalid ones, and when all the αj for

the invalid instruments are the same and equal to a, then for the invalid instruments we

have that

plim (ĉn,j)j∈{1,..,s} =
aQ′.j

(
es − ιL ι

′
LQes
ι′LQιL

)
√

1− (Q′
j.ιL)

2

ι′LQιL

, (17)

and for the valid instruments

plim (ĉn,r)r∈{s+1,..,L}

aQ′.r

(
es − ιL ι

′
LQes
ι′LQιL

)
√

1− (Q′
.rιL)

2

ι′LQιL

(18)

where es =
(
ι′s 0′L−s

)′
and 0L−s is an L− s vector of zeros.

KZCS first of all set all pairwise correlations of the instruments equal to a single value

η. In that case Q′.jιL = Q′.rιL and the invalid instruments are selected, if∣∣∣1 + (s− 1) η −
(

(1 + (L− 1) η)
s

L

)∣∣∣ > ∣∣∣sη − (1 + (L− 1) η)
s

L

∣∣∣ ,
or

(L− s) (1− η) > |−s (1− η)| ⇐⇒ L > 2s,

which is the same result as (13) derived for uncorrelated instruments.

KZCS considered 2 alternative designs, one with the same pairwise correlation η

within the valid and invalid instruments but no correlation between the valid and invalid

instruments, and one with only pairwise correlation η between valid and invalid instru-

ments. As above, from (17) and (18), it can be shown that both these designs do not

alter the results derived above for equal strength instruments when the instruments are

uncorrelated .
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There are however correlation structures that affect the selection process in such a

way that the large sample LARS/Lasso path does not include a model where all invalid

instruments are selected, even when s < L/2. This has been documented well for the

Lasso in the standard linear model, see e.g. Zou (2006). As a simple example, if η1 is

the pairwise correlation between the invalid instruments, η12 that between the valid and

invalid ones, and η2 that between the valid instruments, then e.g. for L = 10, s = 3,

and values of η1 = −0.22, η12 = −0.11 and η2 = 0.85, from (17) and (18) we get for the

invalid and valid instruments

plim (ĉn,inv) /a = 0.5570

plim (ĉn,val) /a = −0.5915.

Hence, for this parameter configuration and correlation structure, the valid instruments

will be selected as invalid in large samples.

There is an important conceptual issue when instruments are correlated in the sense

that for general correlation structures valid instruments are only valid after inclusion of

the invalid instruments in the model. This is unlike the case of uncorrelated instruments,

where inclusion of invalid instruments in the model or dropping them from the instru-

ment set both lead to a consistent 2SLS estimator. Therefore, assumption (2) about

the relationship between the instrument and the confounders, E
[
Y
(0,0)
i |Zi.

]
= Z′i.ψ, is

essential for the identification and estimation of the parameters when instruments are

correlated. As can be seen from the observational model (3), the direct effect assumption

(1) and the conditional mean assumption (2) are observationally equivalent. Consider

changing the conditional mean assumption (2) to one of correlation, i.e.

E
[
Y
(0,0)
i Zi.

]
= ψ̃, (19)

with some of the elements of ψ̃ equal to 0. These are for example the moments considered

by Liao (2013) and Cheng and Liao (2015). Then model (3) no longer follows unless

instruments are uncorrelated. For general correlation structures all instruments would

enter (3) under condition (19), or in other words, all αj coeffi cients would be unequal to

0 and the causal effect parameter would therefore not be identified using the selection

methods based on model specification (3).
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6 A Consistent Estimator when s < L/2 and Adap-
tive Lasso

As the results above highlight, the LARS/Lasso path may not include the correct model,

leading to an inconsistent estimator of β. This is the case even if more than 50% of

the instruments are valid because of differential instrument strength and/or correlation

patterns of the instruments. In this section we present an estimation method that consis-

tently selects the invalid instruments when more than 50% of the potential instruments

are valid. This is the same condition as that for the LARS/Lasso selection to be con-

sistent for equal strength uncorrelated instruments, but the proposed estimator below is

consistent when the instruments have differential strength and/or have a general correla-

tion structure. We build on the result of Han (2008), who shows that the median of the

L IV estimates of β using one instrument at the time is a consistent estimator of β in a

model with invalid instruments, but where the instruments cannot have direct effects on

the outcome, unless the instruments are uncorrelated.

Define

Γ̂ = (Z′Z)
−1

Z′y;

γ̂ = (Z′Z)
−1

Z′d,

and let π̂ be the L vector with j-th element

π̂j =
Γ̂j
γ̂j
, (20)

then, under model specification (3), assumptions C1-C3 and the condition that s < L/2,

β̂m ≡ median (π̂) (21)

is a consistent estimator for β.

22



The proof is simply established, as under the stated assumptions,

plim
(

Γ̂
)

= plim
((
n−1Z′Z

)−1
n−1Z′y

)
= plim

((
n−1Z′Z

)−1
n−1Z′ (dβ + Zα + ε)

)
= (E [Zi.Z

′
i.])
−1
E [Zi.Di] β + α

= γβ + α;

plim (γ̂) = plim
((
n−1Z′Z

)−1
n−1Z′d

)
= (E [Zi.Z

′
i.])
−1
E [Zi.Di] = γ.

Hence

plim (π̂j) =
γjβ + αj

γj
= β +

αj
γj
.

As s < L/2, more than 50% of the αs are equal to zero and hence it follows that more

than 50% of the elements of plim (π̂) are equal to β. Using a continuity theorem, it then

follows that

plim
(
β̂m

)
= median {plim (π̂)} = β.

Given the consistent estimator derived above for β, we can obtain a consistent esti-

mator for α

α̂m = (Z′Z)
−1

Z′
(
y − dβ̂m

)
,

which can then be used for the adaptive Lasso specification of (11) as proposed by Zou

(2006). The adaptive Lasso estimator for α is defined as

α̂λad = arg min
α

1

2n
‖y − Z̃α‖22 +

λ

n

L∑
l=1

|ω̃lαl|
|α̂m,l|ν

.

Table 4 presents the estimation results for the adaptive Lasso for the design as in Table

3, setting ν = 1. For n = 500 the adaptive Lasso estimators are severely biased upwards,

but for the larger sample sizes they perform well.
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Table 4. Estimation results for β, Adaptive Lasso; L = 10, s = 3, γinv = 3γval

#sel instr prop Z.1, .,Z.3

β bias std dev rmse mad [min, max] selected
n = 500

β̂m 0.1126 0.0935 0.1463 0.1129
Post-ALassocvse 0.2426 0.0787 0.2550 0.2568 0.46 [0,6] 0.04
Post-ALassoah 0.2173 0.1091 0.2432 0.2471 0.85 [0,5] 0.07
n = 2000

β̂m 0.0636 0.0503 0.0811 0.0649
Post-ALassocvse 0.0283 0.0774 0.0824 0.0348 3.07 [0,6] 0.89
Post-ALassoah 0.0172 0.0673 0.0694 0.0302 3.05 [1,5] 0.94
n = 10, 000

β̂m 0.0278 0.0226 0.0358 0.0285
Post-ALassocvse 0.0011 0.0185 0.0185 0.0128 3.02 [3,6] 1
Post-ALassoah 0.0009 0.0185 0.0185 0.0128 3.01 [3,5] 1
Notes: Results from 1000 MC replications; a = 0.2; β = 0; γval= 0.2 ρ = 0.25

7 An Alternative Selection Method

As discussed in Section 2, Theorem 1 in KZCS states that the parameters in model (3)

are identified if the valid instruments form the largest group, where instruments form

a group if they have the same value of π as defined in (7). In the previous section we

derived a consistent estimator of the parameters for the case where s < L/2, which is a

suffi cient but not necessary condition for identification.

The Andrews (1999) method in principle could be applied directly, but that would

entail estimating all possible configurations of model (3). This would lead to an im-

practical number of models, even with a moderate number of potential instruments. As

highlighted by Andrews and Lu (2001), this would lead to a quite poor performance of

the selection method based on Hansen’s J-statistic. However, given the simple model

structure, we can use the consistent estimates of the πj as given in (20) to consistently se-

lect the correct model. Following Andrews (1999), selection can be done in two fashions,

an upward and a downward selection method.

The upward selection method identifies groups of instruments that imply similar effect

sizes of the exposure as follows. Rank-order the estimates of the effects π̂j, and denote

the rank-ordered sequence by π̂[j], with π̂[1] the smallest and π̂[L] the largest values of π̂.

24



Denote the instruments associated with π̂[j] by Z.[j]. Then, starting with Z.[1] and Z.[2],

estimate model (3) by two-step GMM treating Z.[1] and Z.[2] as the valid instruments

and compute Hansen’s J-statistic. Using the same setup as in Section 3, Z.[1] and Z.[2]

form a group of instruments if the J-test is smaller than the corresponding critical value

ζn,1. If that is the case, we then add in subsequent steps Z.[3], Z.[4]... until the Hansen

J-test rejects. If this happens at the l-th step, then
{
Z.[1], ...,Z.[l−1]

}
forms a group of

instruments. We then repeat this sequence starting with Z.[2] and Z.[3], until the last pair

Z.[L−1] and Z.[L] has been evaluated. We then select as the valid instruments the group

with the largest number of instruments, or, as in Andrews (1999), if there are multiple

groups with the largest number of instruments, we select within this set the one with the

smallest value of the J-test. If there are no groups of sizes two and above, then none of

the instruments can be classified as valid.

The downward selection method is similar, but starts from the model with the set of

valid instruments being all instruments,
{
Z.[1], ...,Z.[L]

}
. If this model is rejected, con-

sider the set
{
Z.[1], ...,Z.[L−1]

}
etc. until the Hansen J−test does not reject, or the set{

Z.[1],Z.[2]

}
has been evaluated. Then repeat the procedure starting from

{
Z.[2], ...,Z.[L]

}
,

until the final set
{
Z.[L−1],Z.[L]

}
has been reached. The final model selection is as de-

scribed above for the upward testing procedure. Clearly, for both procedures models with

a smaller number of valid instruments than the largest group already identified need not

be evaluated.

Under the assumption that the group of valid instruments is the largest group, and

for the critical values of the J-test obeying assumptions (15) as in Andrews (1999), these

procedure will consistently select the correct model. Table 5 presents results for the 2SLS

estimator after applying the upward selection method for the same design as in Tables

1/2 and 3/4. The results of the downward procedure are virtually identical and not

reported here. It is clear that for these designs, this sequential approach performs very

similar to the best performing (adaptive) post-Lasso estimators.

25



Table 5. Estimation results for β, Upward selection procedure; L = 10, s = 3

2SLSah,up #sel instr prop Z.1, .,Z.3

β bias std dev rmse mad [min, max] selected
γinv = γval
n = 500 0.0568 0.1230 0.1354 0.0816 2.50 [0,4] 0.54
n = 2000 0.0043 0.0426 0.0428 0.0285 3.01 [3,5] 1
n = 10, 000 0.0006 0.0183 0.0183 0.0127 3.01 [3,4] 1
γinv = 3γval
n = 500 0.2396 0.1034 0.2610 0.2616 0.81 [0,4] 0.05
n = 2000 0.0161 0.0751 0.0768 0.0285 2.97 [1,4] 0.94
n = 10, 000 0.0006 0.0184 0.0184 0.0127 3.01 [3,4] 1
Notes: Results from 1000 MC replications; a = 0.2; β = 0; γval= 0.2 ρ = 0.25

Again, for n = 500, the method produces a substantially upward biased estimator

when γinv = 3γval. This behaviour can be understood as follows. As

Yi = Diβ + Z′i.α + εi = Z′i. (γβ + α) + εi + viβ

= Z′i.Γ + εi + viβ,

we have for this particular design that, under standard regularity conditions, the limiting

distribution of Γ̂ is given by

√
n
(

Γ̂− Γ
)

d→ N (0, I) .

As

π̂ = T−1γ̂ Γ̂

where Tγ̂ = diag
(
γ̂j
)
, i.e. a diagonal matrix with diagonal elements

{
γ̂j
}
, it follows that

√
n (π̂ − π)

d→ N
(
0, T−2γ

)
,

or

π̂
a∼ N

(
π, n−1T−2γ

)
. (22)

Using this asymptotic distribution to approximate the finite sample distribution, when

a = 0.2 and γinv = γval = 0.2, we have that a/γinv = 1, and for a valid and an invalid

instrument, we have

P (π̂val < π̂inv) = P

(
π̂val − π̂inv + 1

2 (0.2
√
n)
−1 <

1

2 (0.2
√
n)
−1

)
≈ Φ

(
0.1
√
n
)
,
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which is equal to 0.987 for n = 500. When γinv = 3γval = 0.6, we have that a/γinv = 1/3,

and

P (π̂val < π̂inv) = P

(
π̂val − π̂inv + 1/3

(0.2
√
n)
−1

+ (0.6
√
n)
−1 <

1/3

4 (0.6
√
n)
−1

)
≈ Φ

(
0.05
√
n
)
,

which is equal to 0.868 for n = 500. When taking 100, 000 draws from the distribution

(22) we find that when γinv = γval = 0.2, and n = 500, for 98.6% of the draws the

π̂[L−2], ...π̂L are those associated with the 3 invalid instruments, i.e. with those that have

nonzero α. When γinv = 3γval = 0.6, this percentage drops to 43.4%. So we see how in

this design the relative strength of the invalid instruments affects the ability to segregate

the valid and invalid instruments by the values of π̂ in finite samples.

8 Application, The Effect of BMI on Diastolic Blood
Pressure using Genetic Markers as Instruments

We use data on 105, 276 individuals from the UK Biobank and investigate the effect of

BMI on diastolic blood pressure (DBP). See Collins (2012) for further information on

the UK Biobank. We use 96 single nucleotide polymorphisms (SNPs) as instruments for

BMI as identified in independent GWAS studies, see Locke et al. (2015).

Because of skewness, we log-transformed both BMI and DPB. The linear model spec-

ification includes age, age2 and sex, together with 15 principal components of the genetic

relatedness matrix as additional explanatory variables. Table 6 presents the estimation

results for the causal effect parameter, which is here the percentage change in DPB due

to a 1% change in BMI. As critical value for the test based procedures we take again

0.1/ ln (n) = 0.0086.
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Table 6. Estimation results, the effect of ln (BMI) on ln (DPB)
estimate st err # sel instr p-value J-test

OLS 0.206 0.003
2SLS 0.087 0.016 0 0.0000

Lassocvse 0.110 18
Post-Lassocvse 0.147 0.020 18 0.4889
Post-Lassoah 0.121 0.019 12 0.0122

median, β̂m 0.148
ALassocvse 0.131 17

Post-ALassocvse 0.151 0.019 17 0.4091
Post-ALassoah 0.162 0.019 11 0.0102

2SLSah,up=2SLSah,down 0.105 0.017 19 0.0089

Notes: sample size n = 105, 276; L = 96

The OLS estimate of the causal paramater is equal to 0.206 (s.e. 0.003), whereas the

2SLS estimate treating all 96 instruments as valid is much smaller at 0.087 (s.e. 0.016).

The J-test, however, rejects the null that all the instruments are valid. The Lassocvse

procedure identifies 18 instruments as invalid. Ordering the instruments according to the

values of the π̂j, the [j] indices for these 18 invalid instruments are given by {1, 2, 4, 5, 7,

9, 11, 13, 16, 18, 23, 31, 82, 83, 86, 90, 91, 94}. The Lassocvse estimate is equal to 0.110

and the Post-Lassocvse estimate is equal to 0.147, which is in line with our findings above

that the Lasso shrinkage estimator is biased towards the 2SLS estimator that treats all

instruments as valid.

The Post-Lassoah procedure selects 12 instruments as invalid, given by {1, 2, 4, 5, 7,

9, 11, 31, 82, 86, 91, 94}, i.e. compared to the cvse method, the ones that are not found

to be invalid are {13, 16, 18, 23, 83, 90}. The Post-Lassoah parameter estimate is equal

to 0.121.

The median estimate β̂m is equal to 0.148. Using the estimate for the adaptive lasso

results in the cvse method selecting 17 instruments as invalid. These are given by {1, 2,

4, 5, 7, 9, 11, 13, 16, 18, 21, 31, 82, 86, 90, 91, 94}. Compared to the Lasso cvse method

above, instruments {23, 83} are no longer found to be invalid, whereas instrument {21}

now is. The adaptive Lassoah method selects 11 instruments as invalid, given by {1, 2,

4, 5, 7, 9, 11, 16, 18, 31, 94}. Compared to the Lassoah method above, instruments

28



{82, 86, 91} are no longer found to be invalid, whereas instruments {16, 18} now are.

Compared to the adaptive Lassocvse method, {13, 21, 82, 86, 90, 91} are not found to be

invalid using the adaptive Lassoah procedure. The adaptive Lassocvse, post-Lassocvse and

post-Lassoah estimates are equal to 0.131, 0.151 and 0.161 respectively.

The strongest instrument is {31}, which is the FTO gene, and found to be invalid.

The value for π̂[31] = −0.009, i.e. negative, which is contrary to the direction of the found

causal effect.

Finally, the 2SLSah,up and 2SLSah,down procedures select the same set of 19 instruments

as invalid. These instruments are {1,..,11,89,..96}, i.e. these methods select the 11 (8)

instruments with the smallest (largest) values π̂j, which does ot include {31}.
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9 Appendix

9.1 LARS Steps for Instrument Selection

Following Efron et al. (2004), the LARS algorithm begins at µ̂0 = 0 and builds up µ̂ by

steps. Suppose that µ̂A is the current LARS estimate and that

ĉn = n−1Z̃′ (y − µ̂A) (23)

is the vector of current correlations. The active set A is the set of indices corresponding

to covariates with the greatest absolute current correlations

Ĉn = max
j
{|ĉn,j|} and A =

{
j : |ĉn,j| = Ĉn

}
.

Define

sj = sign {ĉn,j} for j ∈ A
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and

Z̃s
A =

(
· · · sjZ̃.j · · ·

)
j∈A

= Z̃ASA

with SA = diag (sj). Further, define

Gn,A = n−1Z̃s′
AZ̃s

A = SAZ̃′AZ̃ASA.

and

Bn,A =
(
ι′AG−1n,AιA

)−1/2
where ιA is a vector of ones of length |A|, the size of A. Define the equiangular vector

un,A = Z̃ASAwn,A,

where

wn,A = Bn,AG−1n,AιA.

Further, define

bAn = n−1Z̃′un,A,

with j-th element bAn,,j.

Then the next step of the LARS algorithm updates µ̂A to

µ̂A+ = µ̂A + κ̂Au
n,A

where

κ̂A = min
j∈Ac

+

{
Ĉn − ĉn,j
Bn,A − bAn,j

,
Ĉn + ĉn,j
Bn,A + bAn,j

}
(24)

where min + indicates that the minimum is taken over only positive components within

each choice of j. κ̂A is the smallest positive value of κA such some new index ĵ joins the

active set; ĵ is the minimizing index in (24) and the new active set A+ is A ∪
{
ĵ
}
. The

updated correlations are equal to ĉn,j − κ̂AbAn,j, the new maximum absolute correlation is
Ĉn,+ = Ĉn − κ̂ABn,A, which is the value of the correlations for the active set A+.

Assuming that all γj are the same and that E [Zi.Z
′
i.] = plim (n−1Z′Z) = IL, we have

that

plim
(
n−1Z̃′Z̃

)
= I− L−1ιLι′L,

and hence

plim
(
Ω̃n

)
= diag

(√
1− L−1

)
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and so we can ignore Ω̃n asymptotically for this case and focus on ĉn as defined above

in (23).

As

plim
(
n−1Z̃′AZ̃A

)
= IA − L−1ιAι′A,

it follows that

GA = plim
(
n−1Gn,A

)
= S′A

(
IA − L−1ιAι′A

)
SA

= IA − L−1sAs′A,

where sA is the |A| vector of signs {sj}. Hence,

G−1A = IA + (L− |A|)−1 sAs′A

and

BA = plim (Bn,A) =
(
ι′AG−1A ιA

)−1/2
=
(
|A|+ (L− |A|)−1 q2A

)−1/2
where

qA = ι′AsA

is the difference in the numbers of +1 and −1 in sA. Further,

wA = plim (wn,A) = BAG−1A ιA = BA

(
ιA +

qA
(L− |A|)sA

)
and

plim
(
n−1SAZ̃′AuA

)
= BAιA.

Then

bA = plim
(
bAn
)

=

 plim
(
n−1Z̃ ′AZ̃ASAwA

)
plim

(
n−1Z̃ ′AcZ̃ASAwA

)  =

[
(IA−L−1ιAι′A) SAwA

−L−1ιAcι′ASAwA

]
Consider the case as described in Section 2 with all non-zero αs being positive, and

ordered such that α1 > α2 > .. > αs > αs+1 = ... = αL = 0. We have at µ̂0 = 0,

plim (ĉn) = plim
(
n−1Z̃′y

)
= α− α. (25)

It follows that if (α1 − α) > α, then A = A1 = {1} and Ĉ = |α1 − α|. The minimum κ̂A1

for the invalid instruments is given by

min (κ̂A1,inv) =
(α1 − α)− (α2 − α)

BA1 − bA12
=

α1 − α2
BA1 − bA12
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and for the valid instruments,

min (κ̂A1,val) =
(α1 − α) + (−α)

BA1 + bA1val
=

α1 − 2α

BA1 + bA1val

and so the invalid Z̃.2 enters the active set if

α1 − α2
BA1 − bA12

<
α1 − 2α

BA1 + bA1val
,

and then κ̂A1 = min (κ̂A1,inv).

At step m, assume that m < s invalid instruments have been selected, hence A =

Am = {1, 2, ...,m}. For all A1...Am we have that all correlations are positive, so SA = IA,

sA = ιA, qA = |A|, and

BA =

(
L− |A|
L |A|

)1/2
wA = BA

(
1 +

|A|
L− |A|

)
ιA = BA

(
L

L− |A|

)
ιA

b
Aj
j+1 = b

Aj
val = −BAj

(
|Aj|

L− |Aj|

)
.

As there are no Lasso steps, |Aj| = j.

By repeated substitution, the minimum κ̂Am for the invalid instruments is then given

by

min κ̂Am,inv =

(
α1 − α−

∑m−1
j=1 κ̂AjBAj

)
−
(
αm+1 − α−

∑m−1
j=1 κ̂Ajb

Aj
m+1

)
BAm − bAmm+1

=
α1 − αm+1 −

∑m−1
j=1 (αj − αj+1)

BAm − bAmm+1
=

αm − αm+1
BAm − bAmm+1

.

For the valid instruments it is given by

min κ̂Am,val =

(
α1 − α−

∑m−1
j=1 κ̂AjBAj

)
+
(
−α−

∑m−1
j=1 κ̂Ajb

Aj
val

)
BAm + bAmval

=

α1 − 2α−
∑m−1

j=1 (αj − αj+1)
BAj+b

Aj
val

BAj−b
Aj
j+1

BAm + bAmval
as

BAj + b
Aj
val = BAj

(
1− |Aj|

L− |Aj|

)
= BAj

(
L− 2 |Aj|
L− |Aj|

)
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and

BAj − b
Aj
j+1 = BAj

(
1 +

|Aj|
L− |Aj|

)
= BAj

(
L

L− |Aj|

)
it follows that

BAj + b
Aj
val

BAj − b
Aj
j+1

=
L− 2 |Aj|

L
=
L− 2j

L
.

Therefore

α1 − 2α−
m−1∑
j=1

(αj − αj+1)
BAj + b

Aj
val

BAj − b
Aj
j+1

= α1 − 2α−
m−1∑
j=1

(αj − αj+1)
L− 2j

L

=
L− 2 (m− 1)

L

(
αm − 2α(m−1)

L− (m− 1)

L− 2 (m− 1)

)
where

α(m−1) =
1

L− (m− 1)

L∑
j=m

αj.

Then the next invalid instrument gets selected if

αm − αm+1
BAm − bAmm+1

<

L−2(m−1)
L

(
αm − 2α(m−1)

L−(m−1)
L−2(m−1)

)
BAm + bAmval

αm − αm+1 <
L− 2 (m− 1)

L

(
αm − 2α(m−1)

L− (m− 1)

L− 2 (m− 1)

)(
L

L− 2m

)
αm+1 > 2α(m)

L−m
L− 2m

.

Hence the LARS algorithm selects the last invalid instrument at step s if

αs > 2α(s−1)
L− (s− 1)

L− 2 (s− 1)
= 2

αs
L− (s− 1)

L− (s− 1)

L− 2 (s− 1)

L− 2s+ 2 > 2 ⇔ s < L/2.

For L even, if s = L/2 thenmin (κ̂As,inv) = min (κ̂As,val) and all remaining instruments

get in principle selected as invalid. In practice therefore, the invalid instrument may or

may not be selected as invalid. If s > L/2, the valid instruments get selected as invalid

before all invalid ones have been selected, and hence there is no path that includes all

invalid instruments.
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